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1. INTRODUCTION 

During software evolution, different variations of a software system are generally developed. The 

need to apply a common change to each of these different versions will likely occur during the lifetime 

of the system. It may also be desirable to combine the unique capabilities of two different versions into 

a new version. Because these software systems can be very large, tools that automatically perform these 

tasks are desirable. Change-merging provides the capability for such a tool. 

2. EVOLUTIONARY PROTOTYPING 

Rapid prototyping is an evolutionary approach to software development that was introduced to 

overcome the following weaknesses of traditional approaches: 

(1) fully developed software systems that do not satisfy the customer's needs, or are obsolete upon 

release 

(2) no capability for accurately evaluating real-time requirements before the software system has been 

built 

Rapid prototyping overcomes these weaknesses by increasing customer interaction during the 

requirements engineering phase of development, providing executable specifications that can be evaluated 

for conformance to real-time requirements, and producing a production software system in a fraction of 

the time required using traditional methods. Rapid prototyping allows the user to get a better 

understanding of requirements early in the conceptual design phase of development. It involves the use 

of software tools to rapidly create concrete executable models of selected aspects of a proposed system 

to allow the user to view the model and make comments early. The prototype is rapidly reworked and 

redemonstrated to the user over several iterations until the designer and the user have a precise view of 

what the system should do. In this approach to rapid prototyping, software systems can be delivered 

incrementally as parts of the system become fully operational (Dampier 1994). 

3. EVOLUTION IN CAPS 

The Computer-Aided Prototyping System (CAPS) is an evolutionary prototyping system designed to 

prototype embedded, real-time systems (Luqi and Ketabchi 1988). CAPS consists of a set of prototyping 

1 



tools connected together by a graphical user interface. One of these tools is an Evolution Control System 

that not only provides version and configuration control for the software system, but also provides project 

management control in the form of scheduling development tasks and automatic assignment of designers 

to those tasks. In the version and configuration control model for the system, development histories are 

represented using variations and versions. Each variation number represents a parallel development 

history, and the version number represents the number of different versions in that particular variation. 

A variation/version number of 3.5 for a prototype means that this is the fifth version in the third variation. 

4.  CHANGE-MERGING 

Change-merging is an integral part of the evolution methodology. During evolutionary development, 

multiple variations of a large system are likely to be developed. This can happen when independent 

development teams are working on different aspects of a system, or when alternate possible solutions to 

a problem are explored in different ways. Change-merging will allow the combination of these 

independently developed variations to be done automatically, ensuring that the resultant system is 

semantically correct, with respect to all of the input variations, or it will report all conflicts preventing 

correct change-merging. This technology encourages the designer to explore multiple solutions to a 

problem, and to spread the development workload in a large project without concern for the subsequent 

integration of these independent efforts (Dampier 1994). 

Change-merging is a process by which significant changes between a base version of a software 

system and multiple modified versions can be isolated and combined into a single program as shown in 

Figure 1. As long as the changes do not conflict with one another, the result will be a program with the 

capabilities of all of the modified versions. Syntax-based change-merging methods like the revision 

control system (RCS) and source code control system (SCCS) do this by manipulating code and can 

produce a result that is syntactically correct (Silverberg 1992; Tichy 1982). They cannot provide any 

guarantee of correctness, however, so semantics-based methods are needed. 

5.  CHANGE-MERGING IN EVOLUTION 

Software change-merging can be used in several different ways in software evolution. As we already 

stated, it can be used to combine different changes to the same base program. It can also provide a way 

to update multiple existing versions of a program with a change made to the common base version as 



T.I  ►• 1.7,  ^- 1.3  *- 1.4  >■ 1.5  *■ 1.6 

1.4 

1.3 

1.5 

1.6 

Figure 1. Change-merging two modified versions of a common base version. 

illustrated in Figure 2. In this example, version 1.1 is the base, versions 1.2 and 2.2 are the modified 

versions, and version 3.2 is the changed base. The result of each of these operations is a modified version 

updated with the common change. It can also be used to check consistency between independently 

developed versions. If a change-merge operation applied to two independently developed versions does 

not produce a conflict, then the versions are consistent 

1.2 

1.3 1.1 

3.2 

2.2 

2.3 

3.2 

Figure 2. Updating multiple modifications with a change to the common base. 

Another possible use of this technology is retracting changes from an evolution history. This idea is 

useful if after several iterations of the evolutionary process, the customer decides a feature of the software 

is no longer desired. Using change-merging, it should be possible to automatically retract the change as 



long as the retraction does not cause a conflict in subsequent changes. The result of this operation would 

be a version that contains all of the capability in the most recent version of the system, except that 

contained in the retracted change, as shown in Figure 3. 

1.1 1.3 

Figure 3. Retracting an earlier change from a subsequent version. 

This example is designed to illustrate the removal of the change resulting in version 1.4 from 

version 1.5. Since 1.4 is the base version of the change-merge operation, the significant change from 1.4 

to 1.3 is the retraction needed. This retraction must be preserved in the change-merged version 1.6. 

6.  SUMMARY AND FUTURE WORK 

We have developed a slicing method for change-merging prototypes written in the prototype system 

description language (PSDL), the prototyping language associated with CAPS (Dampier 1994). This 

method will always produce a correct change-merged version if a conflict is not detected. Future work 

will include improving the resolution of the tool to prevent conflict reporting when no conflict exists, and 

trying to develop a change-merge method for other languages, perhaps Ada. 
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